社区应用 最新帖子 精华区 社区服务 会员列表 统计排行 银行
  • 2863阅读
  • 3回复

剖析三菱GDI

楼层直达
级别: 总版主

随着近年燃油价格不断往上窜,汽车运行的最佳经济性也成为各大车厂不断寻求的目标。汽油直喷式是实现这一目标的途径之一,汽油机实现直喷式巳经成为一种新世纪的潮流。


汽油直喷式也称为缸内喷注,本栏目“稀燃发动机技术的发展”一文巳有介绍,本文以比较典型的三菱直喷式汽油机(简称:GDI)的工作情况为例,再做一次比较全面的介绍。在这之前,首先介绍化油器、电控喷射与直喷式等三种汽油机的不同供油方式。


化油器发动机是在进气管道的化油器位置上吸出汽油,与空气混合,雾化形成混合气,经气门进入气缸(左图);电控汽油喷射发动机是在进气歧管,气门之前的位置上喷射汽油,再经气门进入气缸(中图);直喷式汽油发动机则是直接在气缸里面喷射汽油(右图)。从而可知,世界上三种形式的汽油发动机的重大区别在于汽油出口的位置,位置不同,技术也不同。









缸内喷注的关键在于产生与传统发动机不同的缸内气流运动状态,通过技术手段使喷射入气缸的汽油与空气形成一种多层次的旋转涡流。因此GDI采用了立式吸气口、弯曲顶面活塞、高压旋转喷射器等三种技术手段。


立式吸气口代替传统的横向吸气口,通过来自上方的强大下降气流,形成与以往发动机相反的缸内空气流动-纵向涡流转流。弯曲顶面活塞利用活塞顶的凸起形状,增强了这个纵向涡流转流,再通过高压旋转喷射器喷射出雾状汽油,在压缩冲程后期的点火前夕,被气体的纵涡流融合成球状雾化体,形成一种以火花塞为中心,由浓到稀的层状混合气状态。这样,从总体上看,虽然混合比达到40:1,但聚集在火花塞周围的混合气却很浓厚,很容易点火燃烧。








在这里要特别介绍一下活塞顶的形状对缸内气流的作用。活塞在上止点位置时,活塞头顶面与气缸盖之间的间隙叫做燃烧室,燃烧室的容积是决定发动机性能的重要因素。GDI活塞顶面的凸起部分象屋顶,又称“弯曲顶面活塞”(见图),它缩小了燃烧室的容积,有助于形成强势涡流。缩小燃烧室容积必然提高了压缩比,因此GDI的压缩比达到12:1,比以往发动机高出1/3左右。压缩比提高了,缸内温度必然也随之提高,有助于稀燃。压缩比高,输出功率增大,这样也就弥补了稀燃带来的功率损失。

压缩比提高也就是说缸内压力提高了,于之配合的是高压燃料泵,用高压方式将汽油送进燃烧室内。但是,汽油的性质决定压缩比只能局限于一定的限度内,否则就会出现爆燃,为了避免这一现象,GDI分两步喷射的过程,第一步在进气冲程中喷射汽油以降低气体温度,适应高压缩比;第二步在压缩冲程后期喷射汽油,形成上面阐述过的层状混合气形态。这是一环扣一环的技术,相辅相成,缺一不可。


稀燃技术有省油的优点,但因为高压高温环境也会产生NOx(氮氧化物)排放过高的现象。GDI采用了EGR技术解决这个问题。所谓EGR是指排气再循环技术,将排出气缸已经燃烧过的部分气体利用气门重叠时间再回到气缸中,降低燃烧的最高温度从而降低NOx的排放量。据介绍GDI的NOx下降了90%,是否如此,只有环保部门的测量才能知晓了。


据三菱介绍,GDI与以往的发动机相比,扭矩提高了10%;加速性能提高5%;空载时燃料下降40%;汽车以时速40公里/小时行驶时燃料下降25%;由于GDI在中低速段比较节油,因此在市区行驶,其节油的效率十分明显。


作者:曾生

美丽湛江我的家 呼号:BG7JMI 中国移动:137 909 63766 QQ:455506113

级别: 总版主
只看该作者 1楼 发表于: 2004-09-09

稀燃发动机技术的发展

“缸内喷注式汽油发动机”一文中,提到了“稀燃”技术。什么叫稀燃?顾名思义就是发动机混合气中的汽油含量低,汽油与空气之比可达1:25以上。

其实,在20多年前就已经有人在研究稀燃技术。面对21世纪70年代初欧美国家的排放规定以及石油危机引起的降低油耗的需求,人们探索了由稀混合气运行,用氧化催化剂净化排气的方法,采用了一种带副燃烧室的发动机。这种由丰田及本田公司发明的燃烧方式由于从副燃烧室喷出火焰会造成热能损失,稀混合气发动机改进对油耗的效果不明显。

从那以后,随着进气口的改进,气缸内旋涡生成技术的进步,由通用、福特、丰田、本田、日产等汽车公司先后搞成的开口式燃烧室可以形成比带副燃烧室还好的稀薄混合气燃烧,并且随着进气口燃料喷射技术的发展和稀混合气传感器技术的开发,精密控制空燃比已成为可能。80年代中期,丰田正式使稀混合气发动机(T-LCS)产品化,三菱、本田也相继将其产品实行产品化。

进入90年代,三菱汽车公司研制出来的缸内直喷技术使稀燃技术又进了一步。目前,各大公司都拥有自己的稀燃技术,其共同点都是利用缸内涡流运动,使聚集在火花塞附近的混合气最浓,先被点燃后迅速向外层推进燃烧,并有较高的压缩比。

比较著名的三菱缸内喷注汽油机(GDI),可令混合比达到40:1。
它采用立式吸气口方式,从气缸盖的上方吸气的独特方式产生强大的下沉气流。这种下沉气流在弯曲顶面活塞附近得到加强并在气缸内形成纵向涡旋转流。在高压旋转喷注器的作用下,压缩过程后期被直接喷注进气缸内的燃料形成浓密的喷雾,喷雾在弯曲顶面活塞的顶面空间中不是扩散而是气化。
这种混和气被纵向涡旋转流带到火花塞附近,在火花塞四周形成较浓的层状混和状态。这种混合状态虽从燃烧室整体来看十分稀薄,但由于呈现从浓厚到稀薄的层状分布,因此能保证点火并实现稳定燃烧。

大众的直喷汽油发动机(FSI),则是采用了一个高压泵,汽油通过一个分流轨道(共轨)到达电磁控制的高压喷射气门。它的特点是在进气道中已经产生可变涡流,使进气流形成最佳的涡流形态进入燃烧室内,以分层填充的方式推动,使混合气体集中在位于燃烧室中央的火花塞周围。

本田最新的VTEC发动机也将采用稀燃技术。这款取名为VTEC-i 2.0升发动机将比一般本田发动机省油20%,其特点是将VTEC技术与稀燃技术相结合,也是当低转速时令其中一组进气门关闭,在燃烧室内形成一道稀薄的混合气体涡流,层状分布集结在火花塞周围作点燃引爆,从而起到稀薄燃烧作用。

综上所述,汽车汽油发动机实现稀燃的关键技术归纳起来有以下三个主要方面:

一、提高压缩比
采用紧凑型燃烧室,通过进气口位置改进使缸内形成较强的空气运动旋流,提高气流速度;将火花塞置于燃烧室中央,缩短点火距离;提高压缩比至13:1左右,促使燃烧速度加快。

二、分层燃烧
如果稀燃技术的混合比达到25:1以上,按照常规是无法点燃的,因此必须采用由浓至稀的分层燃烧方式。通过缸内空气的运动在火花塞周围形成易于点火的浓混合气,混合比达到12:1左右,外层逐渐稀薄。浓混合气点燃后,燃烧迅速波及外层。为了提高燃烧的稳定性,降低氮氧化物(NOx),现在采用燃油喷射定时与分段喷射技术,即将喷油分成两个阶段,进气初期喷油,燃油首先进入缸内下部随后在缸内均匀分布,进气后期喷油,浓混合气在缸内上部聚集在火花塞四周被点燃,实现分层燃烧。

三、高能点火
高能点火和宽间隙火花塞有利于火核形成,火焰传播距离缩短,燃烧速度增快,稀燃极限大。有些稀燃发动机采用双火花塞或者多极火花塞装置来达到上述目的。

以上三点只是对整体汽油发动机稀燃技术而言,具体到某种机型会有所偏重。因为各种汽油发动机稀燃方式的技术措施不完全一样,甚至同一部发动机在不同的工况下稀燃方式也会不完全一样。有些着重缸内气流运动及燃油分布的配合,重点在分层燃烧。有些着重加大点火能量、增快火焰传播速度和缩短火焰传播距离,重点在高能点火。

车汇通

美丽湛江我的家 呼号:BG7JMI 中国移动:137 909 63766 QQ:455506113

级别: 荣誉会员
只看该作者 2楼 发表于: 2004-09-27
请问:我们的4G18属于GDI吗
BG7NCM 叫我珠海渔仔
QQ:12905988
级别: 禁止发言
只看该作者 3楼 发表于: 2004-10-02
用户被禁言,该主题自动屏蔽!
快速回复

限100 字节
 
认证码:
上一个 下一个